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a b s t r a c t 

This paper aims at synthesizing multiple realistic-looking retinal (or neuronal) images from an unseen 

tubular structured annotation that contains the binary vessel (or neuronal) morphology. The generated 

phantoms are expected to preserve the same tubular structure, and resemble the visual appearance of 

the training images. Inspired by the recent progresses in generative adversarial nets (GANs) as well as 

image style transfer, our approach enjoys several advantages. It works well with a small training set with 

as few as 10 training examples, which is a common scenario in medical image analysis. Besides, it is 

capable of synthesizing diverse images from the same tubular structured annotation. Extensive experi- 

mental evaluations on various retinal fundus and neuronal imaging applications demonstrate the merits 

of the proposed approach. 

© 2018 The Authors. Published by Elsevier B.V. 
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1. Introduction 

A broad range of biomedical images contain thin and long

tubular-like foreground objects. They include tubular structured

images of various modalities such as magnetic resonance angiog-

raphy, x-ray angiography, retinal fundus images, as well as cel-

lular neuronal images. Taking retinal fundus images as an exam-

ple, topological and geometrical properties ( Martinez-Perez et al.,

20 0 0 ) of the vessel structures provide valuable clinical information

in diagnosing diseases such as proliferative diabetic retinopathy,

glaucoma, and hypertensive retinopathy ( Abramoff et al., 2010 ). Of-

ten, only a handful of annotated images are available, where the

tubular structures are delineated by domain experts through a la-

borious manual process — a typical situation in many biomedical

applications. 

Image analysis and image synthesis have long been regarded

as tightly intertwined techniques, for example, the research work

in analysis-by-synthesis ( Grenander, 1976; Gagalowicz and Philips,

2009 ), as well as the recent progress in human full-body and hand

pose estimation problems ( Shotton et al., 2013; Xu and Cheng,

2013 ), where the synthesis processes or synthetic data play an

important role in addressing the analysis tasks. In the meantime,
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lthough a large number of research activities consider tubular

tructured image analysis (refer to the survey papers of neuronal

nd vascular image analyses Fraz et al., 2012; Peng et al., 2015a;

irbas and Quek, 20 0 0; Lesage et al., 20 09; Scarpa et al., 2011; An-

unziata et al., 2016 ), relatively very little effort has been put in

ynthesizing such images. 

In this paper, we present a learning based approach for syn-

hesizing retinal and neuronal images. Main contributions of our

ork are summarized as follows. (1) Our synthesis model can be

ffectively learned in a data-driven fashion from a relatively small

ample size. For example, we have successfully constructed synthe-

is models for STARE ( Hoover et al., 20 0 0 ) and DRIVE ( Staal et al.,

004 ) fundus image benchmarks, where the corresponding train-

ng images are merely 10 and 20 images, respectively. (2) Based

n a single segmentation input, our approach is capable of syn-

hesizing multiple images. This capacity of introducing diversity is

mportant in biomedical data synthesis. (3) The proposed frame-

ork of Tub-sGAN is the first to incorporate style transfer into the

AN framework, to the best of our knowledge. It is worth not-

ng that the synthesized images are shown useful in improving

mage segmentation performance. In other words, the segmenta-

ion performances of baseline supervised segmentation methods

re improved when trained with additional images synthesized by

ur approach. Extensive experiments on various applications and

atasets demonstrate the ability of our approach in producing re-

listic looking images, as well as in boosting the performance of
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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he segmentation module. Our implementation, together with the

elated results, are made publicly available. 1 

. Related work 

.1. Synthesizing retinal and neuronal images 

One application of synthesizing retinal vessel structures is sur-

ical simulations ( Sagar et al., 1994 ), while others are driven by

he practical demand in empirical evaluations of segmentation or

racing methods. A critical issue with retinal image analysis is the

ack of annotated vessel structures, due to its expensive and labo-

ious nature. This is further complicated by the inter-observer and

ntra-observer variabilities of human observers that are subjective

nd prone to annotation errors ( Fritzsche et al., 2003; Trucco et al.,

013 ). Synthesizing retinal phantoms ( Fiorini et al., 2014; Menti

t al., 2016 ) can be useful in this aspect due to its unique advan-

age of containing complete and unambiguous segmentation an-

otations. Fiorini et al. (2014) focus on reconstructing the textural

ackground from scratch that is heavily based on domain knowl-

dge. The work of Menti et al. (2016) instead aims to derive ves-

els and textures from real data utilizing active shape contours and

alman filter techniques. The results of these methods are reason-

ble, but these methods are complex, sensitive and heavily depen-

ent on domain knowledge. 

Neuronal image synthesis has also been studied based on prior

iological knowledge, where GENESIS ( Bower et al., 2014 ), NEU-

ON ( Carnevale and Hines, 2006 ), and L-Neuron ( Ascoli and Krich-

ar, 20 0 0 ) are probably the most well-known efforts. GENESIS is

 simulation method for constructing realistic models of neurobi-

logical systems. It was one of the first simulation systems specif-

cally designed for modeling nervous systems. NEURON is devel-

ped similarly for modeling individual neurons and neuron net-

orks. L-Neuron anatomically generates neuronal phantoms based

n a Lindenmayer system (or L-system) that prescribes a set of re-

ursive rules. 

.2. Image style transfer, tubular structured image segmentation, and 

ata augmentation 

The problem of image style transfer has

een studied in the past twenty years as in

.g. Hertzmann et al. (2001) and Cheng et al. (2008) . Differ-

nt from generic texture synthesis that generates larger or new

mages with the same textural appearances, image style trans-

er aims at further altering the textural style to be similar to a

pecific reference style image. Recently, impressive results are

btained by Gatys et al. (2016) . This is achieved by the successful

pplication of convolutional neural networks (CNNs) to represent

wo complementary aspects of an image, namely, its content and

ts style ( Tenenbaum and Freeman, 20 0 0 ), where the pixels of

he synthesized image output are updated iteratively to become

exturally close to the reference style image. It has been further

mproved by Ulyanov et al. (2016) and Johnson et al. (2016) , where

eed-forward convolutional neural networks are introduced to

roduce a stylized image instead of updating the image pixels

teratively. 

There have also been a good amount of methods devel-

ped on tubular structured image segmentation ( Maninis et al.,

016; Gu et al., 2017 ). Interested readers can refer to Kirbas and

uek (20 0 0) ; Lesage et al. (20 09) for more thorough reviews. In

pite of these research efforts, it remains challenging to precisely
1 Downloadable at https://www.web.bii.a-star.edu.sg/archive/machine _ learning/ 

rojects/filaStructObjs/Synthesis/index.html . 

3

 

s  
egment 2D and 3D image-based tubular structures. This is further

videnced by the recent BigNeuron effort ( Peng et al., 2015b ) that

alls for innovations in addressing the demands from the neuronal

cience community. A significant number of neuronal images have

een routinely produced in various wet labs, yet there are no suf-

ciently accurate tools available to automatically segment the neu-

ite structures. 

Furthermore, it has become a common practice to enrich the

raining dataset by means of data augmentation, such as cropping,

ipping, and rotating existing training images ( Szegedy et al., 2015;

iregan et al., 2012 ) as well as applying small perturbations in

olor or intensity values ( Krizhevsky et al., 2012 ). 

.3. Generative adversarial networks 

The advancement of deep learning techniques ( Kingma and

elling, 2014; Goodfellow et al., 2014; Oord et al., 2016 ) have

ed to significant progress in generating photo-realistic im-

ges using techniques such as generative adversarial networks

GANs) ( Goodfellow et al., 2014 ). The GANs is considered as a min-

max two-player game between a discriminator neural network

unction and a generator network function. Here the role of the

iscriminator is to identify the synthesized images out of the real

nes, while the generator is to fool the discriminator by synthesiz-

ng instances as close to the real ones as possible. 

A number of GANs variants have been developed for natural im-

ges, including Radford et al. (2015) ; Mirza and Osindero (2014) ;

enton et al. (2015) ; Chen et al. (2016) ; Arjovsky et al. (2017) .

mong them, DCGAN ( Radford et al., 2015 ) introduces a set of con-

traints to stabilize the training dynamics between the generator

nd the discriminator. CGAN ( Mirza and Osindero, 2014 ) facilitates

he training of a synthesis model to generate images conditioned

n class labels. LAPGAN ( Denton et al., 2015 ) uses a cascade of

NNs within a Laplacian pyramid framework to generate the im-

ges from coarse to fine. InfoGAN ( Chen et al., 2016 ) further al-

ows to learn disentangled representations in a completely unsu-

ervised manner. Moreover, the work of Isola et al. (2016) utilizes

echniques similar to U-Net ( Ronneberger et al., 2015 ) to preserve

lobal structural information during its data generation process. 

Recently, GANs techniques have also been introduced to syn-

hesize biomedical images, such as CT and MRI images ( Nie et al.,

017; Wolterink et al., 2017 ). Specifically, a retinal image synthesis

ethod is developed in Costa et al. (2017) . Following the technique

f Isola et al. (2016) , it works by training on a large amount of fun-

us images and the corresponding vessel segmentations. The work

f ( Costa et al., 2018 ) is a further development over ( Costa et al.,

017 ) to remove the dependency on vessel tree inputs, which is

chieved by adding an adversarial autoencoder. Their generated

mages are visually plausible, while sometimes the phantoms may

xhibit unrealistic vessel morphologies. These methods ( Isola et al.,

016; Costa et al., 2017; 2018 ) tend to generate only one fixed out-

ut for a given input. As a result, there is little diversity in the gen-

rated images. Our approach, on the other hand, is capable of pro-

ucing multiple individual phantoms from the same input. A vari-

nt of our model is also proposed that can generate images with

edicated textural appearance resembling that of a target retinal

undus image. Moreover, instead of working with large amount of

raining pairs, the proposed approach can work well with only tens

f training pairs. Finally, the proposed approach can boost the per-

ormance of retinal segmentation when the generated images are

ncluded as additional training examples. 

. Our approach 

In this work, we aim to learn a direct mapping from a tubular

tructured annotation back to a plausible raw image. More specif-

https://www.web.bii.a-star.edu.sg/archive/machine_learning/Projects/filaStructObjs/Synthesis/index.html
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ically, a RGB fundus or neuronal image is denoted by x ∈ R 

W ×H×3 ,

and y ∈ {0, 1} W × H refers to its corresponding tubular structured

annotation. W and H are the width and height of the input im-

age size, respectively. By imitating the image formation process,

let G θ : 
(
y ∈ R 

W ×H , z ∈ R 

Z 
)

→ 

ˆ x ∈ R 

W ×H×3 denote the image gener-

ation function that takes a binary image of tubular structured an-

notation y and a noise code z as input, and produce as output a

phantom 

ˆ x . The noise code vector z is to introduce the appearance

diversity. In practice its length is set to 400. 

Our goals are three-fold. (1) Learn the θ-parameterized function

G from a small training set { ( x i , y i ) } n i =1 . (2) Be capable of explor-

ing the underlying conditional image formation distribution p ( X | y ),

where x is a random variable denoting a feasible fundus or neu-

ronal image conditioning on the particular realization y . A prac-

tical way in simulating such distribution is by sampling a noise

code vector z , which allows us to synthesize plausible yet distinct

RGB image instances given the same input y . (3) Consider an in-

teresting variant of our approach where a specific image style ob-

tained from one additional input image x s can be directly trans-

ferred to the output phantom 

ˆ x . Here the style of x s can be very

different from that of x , and the corresponding contents (i.e., tubu-

lar structure y s and y ) are usually unrelated. The aforementioned

goals seem daunting: given the intricate nature of the image for-

mation process, G is usually a rather sophisticated function, while

the problem is even harder with a small training set. Nonetheless,

by resorting to the powerful deep learning framework of GANs, an

end-to-end learning machine is proposed in this paper, as depicted

in Fig. 1 . The yellow colored area highlights the generator mod-

ule that will be engaged during the testing stage, while the rest of

the modules are employed only at the training stage. In what fol-

lows, we will give a detailed description of the two variants of our

framework, Tub-GAN and Tub-sGAN . 

3.1. Tub-GAN: the basic generative framework 

The top part of Fig. 1 (a) ( i.e. excluding elements in the dashed

box) illustrates the overall work flow of our approach Tub-GAN .

In addition to the generator G θ , consider a discriminator func-

tion D β : 
(
x ∈ R 

W ×H×3 , y ∈ R 

W ×H 
)

→ d ∈ [0 , 1] , whose role is to tell

apart synthetic phantom X := 

ˆ x (ideally d → 0) from real tubu-

lar structured image X := x (ideally d → 1), as visually explained

in Fig. 1 (a). We follow the GANs approach for this minimax two-

player game setting and consider the following optimization prob-

lem that characterizes the interplay between G and D : 

min 

θ
max 

β
L 
(
G θ , D β

)
= E x , y ∼p( x , y ) 

[
log D β ( x , y ) 

]

+ E y ∼p( y ) , z ∼p( z ) 

[
log 

(
1 − D β ( G θ ( y , z ) , y ) 

)]
+ λL DEV (G θ ) , (1)

with λ> 0 being a trade-off constant. Here, the last term is intro-

duced to ensure the synthetic image will not deviate significantly

from the real image, and we consider a simple L1 loss 

L DEV (G θ ) = E x , y ∼p( x , y ) [ ‖ 

x − G θ ( y , z ) ‖ 1 ] . (2)

During training, generator G tries to synthesize realistic-looking

images that can fool the discriminator D , by minimizing the ob-

jective function of Eq. (1) . In practice, following the approxima-

tion scheme of Goodfellow et al. (2014) , it is realized by mini-

mizing a simpler form − log (D β (G θ ( y , z ))) , instead of the original

log (1 − D β (G θ ( y , z ))) . To summarize, the generator G is learned by

minimizing 

L G (G θ ) = −
∑ 

i 

log D β ( G θ ( y i , z i ) , y i ) + λ‖ 

x i − G θ ( y i , z i ) ‖ 1 . (3)

On the other hand, discriminator D attempts to properly sepa-

rate the real images from the synthetic ones by maximizing Eq. (1) ,
hich can be simplified by maximizing 

 D (D β ) = 

∑ 

i 

log D β ( x i , y i ) + log 
(
1 − D β ( G θ ( y i , z i ) , y i ) 

)
. (4)

ote that the sum is used to approximate the expectation. The

earning process is carried out by alternating between these two

ptimization operations, which are similarly adopted by GANs and

ariants ( Goodfellow et al., 2014; Radford et al., 2015; Isola et al.,

016 ). Unfortunately this optimization procedure is not guaran-

eed to reach Nash equilibrium. In practice, we have observed con-

ergence with reasonable image synthesis outputs, which is also

emonstrated in the above GANs related work. In the following

aragraphs, we describe in detail the specific neural net architec-

ures of our functions G and D . 

.1.1. Generator G and discriminator D 

For the generator, the commonly used encoder-decoder strategy

s adopted here ( Wang and Gupta, 2016; Mao et al., 2016; Pathak

t al., 2016; Isola et al., 2016 ), which allows the introduction of

oise code in a natural manner. The encoder part acts as a feature

xtractor where the multiple layered structure captures both local

nd more global data representations. The 400-dimensional noise

ode z is fully connected to the first layer, which is then reshaped.

ote that unless otherwise specified, for all layers of G and D , we

se kernel size 4 and stride 2 without any pooling layer. 

Meanwhile, in our context it is crucial for the generator func-

ion to retain the input tubular structured morphology during

mage generating process. For this, the skip connections of U-

et ( Ronneberger et al., 2015 ) are also considered here. That is,

he previous layer is duplicated by being appended onto the cur-

ent layer in a mirrored fashion that skips odd-number layers with

he center coding layer as its origin. It is worth noting that when

he image size is small and the network model is shallow, the

ncoder-decoder framework may work well even without any skip

onnection. However, as we are working with large image size

 e.g. 512 × 512) and deeper networks, training such model becomes

hallenging. This might be due to the effects of vanishing gradients

ver long paths in error back-propagation. The skip connection, by

laying a similar role to the residual nets ( He et al., 2016 ), allows

he additional direct flow of error gradients from decoder layers

o corresponding encoder layers. This facilitates the proper mem-

rization of global and local shape contents as well as the corre-

ponding textures encountered in the training set, and practically

elps to generate much better results. 

We follow the basic network architecture proposed

n Radford et al. (2015) , to build the layers of the generator

ith multiple Convolution-BatchNorm-LeakyRelu components as

hown in Fig. 1 (b). The activation function of the output layer is

anh to keep the value between −1 and 1. Note that tanh is used

ere instead of sigmoid , which increases the stability of training

ANs. 

On par with our generator, the same Convolution-BatchNorm-

eakyRelu building blocks are used in building our discriminator

s shown in Fig. 1 (c). Here the activation function of the output

ayer is sigmoid . The feature map sizes are halved after each con-

olutional layer ( e.g. the input size is 512 × 512, and the size be-

omes 256 × 256 after one convolutional layer) while the number

f filters ( i.e. the number of feature maps) are doubled from 32 all

he way to 512. 

Up to now, our approach considers to learn a generic represen-

ation from a (usually limited) set of training examples, which is

hen employed in generating tubular structured phantoms, which

s termed Tub-GAN . Next, we consider a variant inspired by the re-

ent style transfer techniques. 
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Fig. 1. (a) Flowchart of our approach, which contains the generator and the discriminator networks as detailed in (b) and (c). The dimensions of all layers are specified. The 

yellow shaded area highlights the generator module that will be engaged in testing. The VGG feature networks are described in (d), where the top row indicates the specific 

layers ( e.g. φ(1) 
1 

, φ(1) 
2 

, . . . ) extracted as style features, while the bottom row are the layers ( e.g. φ(2) 
4 

) used as content features. The 
⊕ 

sign denotes a concatenation operation. 

See text for details. 
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3.2. Tub-sGAN: the style transfer framework 

Inspired by the recent advances in image style transfer, we

consider an alternative variant of our approach as illustrated in

Fig. 1 (a) (now including the components in the dashed box): given

an input segmentation y that delineates its tubular structured con-

tent, the generated phantom 

ˆ x is expected to possess the similar

style ( i.e. texture) of a target style input x s , while still keeping the

content of y that has been presented during training stage. This

variant is termed Tub-sGAN , to highlight the fact that the synthetic

image is now based on a particular style representation provided

by x s , instead of the generic representation we have aimed for in

our basic approach Tub-GAN . This is made possible by introduc-

ing a style image as an additional training input, i.e. a new tubular

structured image x s with a different style or texture. Note that in

general x s has its own tubular structure, which is usually different

from the structure in the input argument y . It is also worth not-

ing that this design makes practical sense in a biomedical imag-

ing setting: on one hand very few images are annotated, while on

the other hand, there could be abundant un-annotated images out

there that could serve as potential style inputs. 

Without loss of generality, we follow the style transfer idea

of Ulyanov et al. (2016) ; Johnson et al. (2016) to utilize the con-

volutional neural network (CNN) of VGG-19 ( Simonyan and Zisser-

man, 2014 ) to extract features from its multiple layers. According

to the network architecture of VGG-19, it can be represented as

a series of five CNN blocks of the VGG net, with each block con-

taining 2–4 consecutive convolution layers of the same size. For

notation convenience, let � denote a set of CNN blocks, and for

a particular block γ ∈ �, its set of layers is represented by �( γ )

or simply �, with a layer index being λ∈ �. For a tubular struc-

tured image x (being either the real x or phantom 

ˆ x ), φ(λ) 
γ ( X ) de-

notes the λth layer of CNN block γ . The VGG-19 net is obtained

by training on the ImageNet image classification task and its de-

tails are illustrated in Fig. 1 (d). In terms of the optimization prob-

lem, it is realized in our approach by explicitly incorporating two

perceptual loss components of Gatys et al. (2016) , namely the style

loss and the content loss, as well as a total variation loss, which

we describe next. 

3.2.1. Style loss 

The style loss is used to minimize the textural deviation be-

tween the target style x s and the phantom 

ˆ x . The textural feature

is characterized by the Gram matrix , where each element G 

(λs ) 
γs ,i j 

rep-

resents an inner product between the i th and j th feature maps in

λs th layer of γ s th block: 

G 

(λs ) 
γs ,i j 

= 

∑ 

k 

φ(λs ) 
γs ,ik 

φ(λs ) 
γs , jk 

. (5)

In Eq. (5) , consider �s as the set of CNN blocks, and for each

block index γ s ∈ �s , its set of layers is represented by �s . φ
(λs ) 
γs ( X )

is defined as the λs th layer of block γ s , where X = x s or X = 

ˆ x .

With a slight abuse of notation, denote the number of feature

maps in current layer λs as | λs |. Let i (or j ) denote the feature map

of interest, and k denotes an element of the current feature map i

(or j ). 

The style loss is calculated by the difference between the Gram

matrices of x s and 

ˆ x during training 

l sty ( G θ ) = 

∑ 

γs ∈ �s ,λs ∈ �s 

	 γs 

W γs 
H γs 

∥∥G 

(λs ) 
γs 

( x s ) − G 

(λs ) 
γs 

(
ˆ x 
)∥∥2 

F 
, (6)

where ‖ · ‖ F is the matrix Frobenius norm, 	 γs denotes the weight

of γ s th block Gram matrix and it is set to 0.2 in practice. Note ˆ x =
G θ ( y , z ) by definition. 
.2.2. Content loss 

For content loss, consider the following notation: let �c refer to

he set of CNN blocks, and for each block index γ c ∈ �c , its set of

ayers is denoted by �c . As already stated, the synthetic phantom

ˆ 
 is expected to abide by the tubular structure as prescribed in

he real raw image x of the segmentation input, which is carried

ut by minimizing the following Frobenius norm of the difference

etween input and generated CNN features: 

 cont ( G θ ) = 

∑ 

γc ∈ �c ,λc ∈ �c 

1 

W γc 
H γc 

∥∥φ(λc ) 
γc 

( x ) − φ(λc ) 
γc 

(
ˆ x 
)∥∥2 

F 
. (7)

.2.3. Total variation loss 

Furthermore, we consider encouraging spatial smoothness in

he generated phantom by incorporating the following total vari-

tion loss: 

 tv ( G θ ) = 

∑ 

w,h 

(∥∥ ˆ x w,h +1 − ˆ x w,h 

∥∥2 

2 
+ 

∥∥ ˆ x w +1 ,h − ˆ x w,h 

∥∥2 

2 

)
, (8)

here w, h ∈ W, H , and ˆ x w,h denotes pixel value of a given location

n phantom image ˆ x . 

The above-mentioned three loss functions together lead to

 ST ( G θ ) = w cont l cont + w sty l sty + w tv l tv . Thus we consider the above

tyle transfer loss L ST , instead of L DEV as in Eq. (1) . Accordingly,

he generator G now takes the objective function of the following

orm 

 G (G θ ) = −
∑ 

i 

log D γ ( G θ ( y i , z ) ) + L ST (G θ ) , (9)

The training and testing processes of this variant remain the

ame as Tub-sGAN : the training is carried out in batch mode over

he n annotated training examples. The aforementioned generator

nd the discriminator functions still carry on as before. The differ-

nces lie in the objective function of generator G , where Eq. (3) is

ow replaced by Eq. (9) . On the other hand, the objective function

f discriminator D of Eq. (4) remains unchanged. It is clear that

n this variant, the style transfer contribution from the target style

 s is obtained by back-propagation optimization of the above ob-

ective function, while the remaining aspects of our approach are

ept the same. 

. Experimental set-up 

.1. Datasets and preparation 

Our approach is tested on four standard benchmarks that cover

 broad spectrum of tubular structured images including both reti-

al blood vessels and neurons. They are DRIVE ( Staal et al., 2004 ),

TARE ( Hoover et al., 20 0 0 ), high-res fundus or HRF ( Köhler et al.,

013 ), as well as 2D Neurons or NeuB1 ( De et al., 2016 ). The im-

ge sizes and the amount of training examples are different across

hese datasets: DRIVE contains 20 training examples and 20 testing

mages, with each of size 584 × 565. STARE and HRF are two fun-

us image datasets with image sizes of 700 × 605 and 3304 × 2336

espectively, and the splits of training/testing images are 10/10 and

2/23 respectively. The NeuB1 dataset is microscopic neuronal im-

ges, which contains 112 images of size 512 × 512. We also follow

he standard train/test split of 37/75 as in De et al. (2016) . 

To summarize, the image sizes of DRIVE, STARE, and NeuB1

re roughly similar, while HRF contains high resolution (and sub-

equently much larger size) images. In preprocessing, raw images

f these first three datasets are all resized to a standard size of

12 × 512. For DRIVE, as all images are of size 584 × 565 and con-

ain a relatively large-size background area (determined if a pixel

s outside of a prescribed circular-shaped mask), they are cropped

nto 565 × 565 sub-images centered around the original ones, and



H. Zhao et al. / Medical Image Analysis 49 (2018) 14–26 19 

a  

f  

a  

a  

t  

3  

t  

fi  

m  

t  

o  

D  

t  

s  

fi  

m

4

 

i  

d  

d  

u  

o  

w  

o  

s  

e  

i  

p  

fi  

a  

f  

v  

b

 

e  

w  

n  

θ  

s  

w  

B  

D  

a  

λ  

G  

e

 

a  

A  

f  

a  

f  

i  

l  

i  

i  

s

 

e  

a  

i  

a  

b  

t  

0  

s  

r

4

 

f

4

 

e  

4  

(  

t  

l  

v  

t  

o

 

t  

w  

r  

1  

a  

f  

f  

a  

d  

m

 

p  

o

4

 

i  

i  

d  

s  

e  

t  

t  

t  

c  

r  

f  

a  

i

4

 

t  

m  

T  

w  

s  

i  

t  

H

ll foreground pixels are still kept in the cropped images. They are

urther resized to 512 × 512 by bicubic interpolation; For STARE,

s margins outside of the foreground mask are rather small, im-

ges are directly resized to the size of 512 × 512 by bicubic in-

erpolation; For HRF, as its raw images are of much larger size of

304 × 2336, these images are all resized to 2048 × 2048 instead of

he 512 × 512 template size used previously, in order to retain suf-

cient information of the original images. For each of the bench-

arks, the pixel intensity values of all the images are scaled to

he same range of [ −1 , 1] . As a result, the learned generator in

ur approach will produce a phantom image of size 512 × 512 for

RIVE, STARE, and NeuB1, and size 2048 × 2048 for HRF, respec-

ively. These images are subsequently upsampled to their original

izes. For any of the above-mentioned fundus image datasets, the

nal results are obtained by applying its prescribed circular-shaped

ask, so only pixels inside the mask are retained as foreground. 

.2. Model architecture and parameters 

Fig. 1 (b)–(d) illustrates the architecture of our approach. The

mage width W and height H are 2048 for HRF and 512 for other

atasets. In the generator and discriminator modules, each 3D box

enotes a CNN layer consisting of its feature maps. A directed edge

sually represents a convolutional (or transposed convolutional)

peration with a filter size w f × h f × l f . In this paper we consider

 f = h f = 4 pixels with l f self-manifested by the third dimension

f its consecutive layer. Note Fig. 1 (b) and (c) specify the intrin-

ic parameter values of our networks G and D , such as the size of

ach layer, and the length of the noise code Z = 400 . In particular,

n generator G , the 
⊕ 

sign together with the two directed edges

ointing to it denote a concatenation operation. For example, the

rst 
⊕ 

sign shows a concatenation of an 8 × 8 × 512 tensor with

n 8 × 8 × 256 tensor that produces an 8 × 8 × 768 tensor; This is

ollowed by a transposed convolutional (also referred to as decon-

olutional) operation of filter size 4 × 4 × 512 that produces the 3D

ox of size 16 × 16 × 512. 

Throughout experiments in our approach, the internal param-

ters are empirically considered: The TensorFlow library is used

ith training epochs being fixed to 100. To initialize the neural

et weights of discriminator D and generator G ( i.e. parameters β ,

), a [ −0 . 04 , 0 . 04] truncated normal distribution of zero-mean and

tandard deviation of 0.02 is used. The weights θ of G are updated

ith mini-batch of size 1 using the Adam optimizer ( Kingma and

a, 2014 ). The vanilla stochastic gradient descent is employed for

 to update β . The learning rate is set to 0.0 0 02 for the generator

nd 0.0 0 01 for the discriminator during back-propagation training.

in our Tub-GAN is set to 100. To balance the learning progress of

 and D , we choose to update G twice then update D once during

ach learning iteration. 

During training, the noise code is sampled elementwise from

 zero-mean Gaussian distribution with standard deviation 0.001.

t testing stage, it is sampled in the same manner but with a dif-

erent standard deviation of 1. This is found useful in maintaining

 proper level of diversity for our small sample-size situation. We

ollow the practice of Radford et al. (2015) where batch normal-

zation is not performed to the output layer of G nor the input

ayer of D . Instead, batch normalization ( Ioffe and Szegedy, 2015 )

s applied right after each convolutional layer. Better model train-

ng behaviors have been observed for both G and D nets by such

ettings. 

For our style transfer variant, Tub-sGAN , the VGG-19 nets are

mployed to produce the feature descriptors. Some of their layers

re used for extracting style/content features, which are illustrated

n Fig. 1 (d). The sets of block indices for style and content losses

re �s = { 1 , 2 , 3 , 4 , 5 } , and �c = { 4 } , respectively. Besides, for any

lock γ s ∈ �s , its particular set of layer indices is �s (γs ) = { 1 } for
he style loss, and �c = { 2 } for the content loss. 	 γs is fixed to

.2 over all blocks in �s . Meantime, the weights of the three re-

pective loss functions, namely w cont , w sty , w tv , are 1, 10, and 100,

espectively. 

.3. Sensitivity of parameters 

Here we focus on the noise code, and proper layers for loss

unctions. More details are provided in the supplementary file. 

.3.1. Noise code z 

Experiments have been carried out to examine the impact of

ngaging noise code z of varying lengths such as 1, 10, 40, 400,

0 0 0. It is observed that when the vector length is relatively small

 e.g. 1, 10, 40), differences in the generated images using dis-

inct noise codes are not noticeable; On the other hand, when the

ength is relatively large ( e.g. 40 0, 40 0 0), our approach produces

isually diversified outputs. There is also not much difference in

erms of diversifying capacity, when the length is 400 or 4000. In

ur applications, 400 is used as the length of z . 

As presented in Fig. 1 (b), the noise code z passes through

wo additional network layers prior to concatenation. This net-

ork structure has the advantage of facilitating a compact

epresentation of length 400 instead of the full-sized length

6,384 = 8 × 8 × 256. Moreover, it is also observed that by either

dopting the full-sized noise code or not, there is not much dif-

erence in terms of the generated images. We attribute it to the

act that in a very high dimensional space, any two vectors are far

way from each other, and as a result, they do not help much with

iversifying the outputs compared to the more compact 400 di-

ensional space as in our case. 

We have observed little difference for a noise code to be sam-

led from a Gaussian vs. from a uniform distribution. In practice,

ur noise code is sampled from a Gaussian distribution. 

.3.2. Proper layers for loss functions in our Tub-sGAN variant 

Fig. 1 (a) presents both style and content loss functions utilized

n our Tub-sGAN : content loss relates to the tubular morpholog-

cal structures, while style loss can be regarded as enforcing the

etailed textural information attached to the underlying tubular

tructures. It has been observed that style features from lower lay-

rs such as φ(1) 
1 

, φ(1) 
2 

preserve detailed pixel information, while

he higher layer features tend to maintain high-level semantic tex-

ures. By including multiple layers, the model is able to capture

he multi-scale textural information on the image. Therefore, we

onsider a style loss function based on the multi-layer feature rep-

esentation of φ(1) 
1 

, φ(1) 
2 

, φ(1) 
3 

, φ(1) 
4 

, φ(1) 
5 

, as well as a content loss

unction based on the single layer feature representation of φ(2) 
4 

,

s illustrated in Fig. 1 (d). This setting can produce visually appeal-

ng results. 

.4. Computation time 

All the experiments are carried out on a standard PC with In-

el iCore 7 CPU and Titan-X GPU with 12GB memory. Our imple-

entation of the proposed Tub-GAN and Tub-sGAN is in Python.

raining time of Tub-GAN and Tub-sGAN on DRIVE or other datasets

ith the same image size takes around 108 min and 184 min, re-

pectively. For the high resolution dataset, HRF, the training time

ncreases to around 438 min. The average run-time speed in syn-

hesizing a DRIVE-size image is 0.45 s, which becomes 1.35 s for a

RF-sized image. 
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Fig. 2. Exemplar DRIVE phantoms generated by Tub-GAN . For each column, the 1st 

row presents a real image, the 2nd row is the corresponding segmentation annota- 

tion, and the 3rd displays one generated phantom. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A zoomed-in view of the synthesized image. Top row presents a real DRIVE 

image in (a), and for a region highlighted in blue, (b) displays the zoomed-in view. 

In the same way, (c) shows a corresponding synthetic image based on the same 

segmentation annotation of (a), and (d) displays the zoomed-in view of the same 

region. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 4. Exemplar STARE phantoms generated by Tub-GAN . For each column, the 1st 

row presents a real retinal image, the 2nd row is the corresponding segmentation 

annotation, while the 3rd row displays one generated phantom. 

Fig. 5. Exemplar HRF phantoms generated by our Tub-GAN model. For each column, 

the 1st row presents a real retinal image, the 2nd row is the corresponding segmen- 

tation annotation, while the 3rd row displays one generated phantom. A zoomed-in 

figure is presented in the supplementary file. 
5. Experimental results 

5.1. Visual results 

Fig. 2 displays exemplar synthetic results of applying Tub-GAN

on DRIVE, where the first row presents the real images, the sec-

ond row shows the corresponding segmentation annotations, and

the last row displays the generated phantoms. It can be observed

that the phantoms preserve the vascular morphology of the input

(the second row in the figure), while being able to present differ-

ent yet realistic-looking texture. It is interesting to note that the

very bright colored areas are usually properly situated around the

optic disc locations of the segmentation images, which suggests

that our phantom generation model could capture this intrinsic

feature without explicit human interventions for introducing such

prior knowledge. A zoomed-in view of the synthetic image is pre-

sented in Fig. 3 to show that detailed information is well generated

by our approach. Similar results can also be obtained in datasets

such as STARE as shown in Fig. 4 , as well as for high-resolution

dataset HRF in Fig. 5 , 2D neuronal dataset NeuB1 in Fig. 6 , and 3D

BigNeuron dataset in Fig. 7 . 

To demonstrate the strength of Tub-GAN in generating multiple

distinct syntheses from the same segmentation annotation, Fig. 8

presents more synthetic results of the first and second annotation

inputs of Fig. 2 , which are obtained by i.i.d. random noise codes

z . Clearly, for each of these segmentation inputs, the results syn-

thesized by Tub-GAN are visually different. It can be observed that

Tub-GAN is relatively more powerful in emulating textural diversity

and less in capturing illumination changes. 

In addition, this Tub-GAN model trained on the DRIVE train-

ing set is applied to images from other datasets. Here we take the

STARE dataset ( Hoover et al., 20 0 0 ) as an example and the results

are presented in Fig. 9 : two random samples are selected, where

from left to right are real image, segmentation annotation, and

phantom, respectively. Not surprisingly, the two synthetic STARE

phantoms bear DRIVE-like textures. Finally, to demonstrate that

Tub-GAN works well even when the segmentation annotations are

not available, an experiment is carried out to evaluate its behav-

ior when a typical segmentation method is employed to produce

binary segmentation maps. Note in fact any reasonable segmenta-

tion method can be used here. As displayed in Fig. 10 , the gener-

ated phantoms are also visually plausible. In terms of 3D images,

Fig. 7 provides exemplar visual results of synthesizing the 3D neu-

ronal image stacks of the Gold166 dataset ( Peng et al., 2015a ), and

more details and examples can be found in the supplementary file

and video. 
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Fig. 6. Exemplar NeuB1 phantoms generated by our Tub-GAN . For each column, the 

1st row presents a real neuronal image, the 2nd is its corresponding segmentation 

annotation, while the 3rd displays one generated phantom. 

Fig. 7. Visual demonstration of synthesizing 3D neuronal image stacks. The first 

row displays the real images, while the second row presents synthetic images. Two 

such examples are provided here. 
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Fig. 8. The two rows in this figure display multiple synthesized results derived 

from the first two columns of Fig. 2 respectively, to showcase the ability of Tub- 

GAN in generating diverse outputs. 

Fig. 9. Application of the Tub-GAN model trained on the DRIVE training set (the 

same model used in Fig. 2 ) to STARE tubular annotations. Two random samples 

are selected, from left to right are real STARE image, segmentation annotation, and 

generated phantom, respectively. 

Fig. 10. Exemplar phantoms generated from segmentation predictions (instead of 

segmentation annotations) of a typical segmentation method trained on DRIVE. In 

each column, the 1st row presents a real DRIVE image, the 2nd row is the cor- 

responding segmentation hypotheses obtained by a state-of-the-art segmentation 

method, the 3rd row displays the generated phantoms. 
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2 Kaggle images are obtained from https://www.kaggle.com/c/ 

diabetic-retinopathy-detection , a contest for diabetic retinopathy detection. 
Now we turn to examine our style transfer variant, Tub-sGAN .

ig. 11 presents a gallery of collective results to the same set of

RIVE retinal images (shown in the 2nd to the 6th columns) when

rained with different style images (shown in the first column).

he generated images with same style are displayed in the same

ow. Here the hindsight real images are presented in the first row

or reference purpose, followed by their corresponding segmenta-

ion annotations in the second row. From the 3rd row onwards,

he generated phantoms with different styles are presented. DRIVE,
aggle, 2 and STARE denote the three distinct style sources. It is ob-

erved that the texture style of each phantom synthesized by our

ub-sGAN is clearly controlled by its particular style input, which is

specially pronounced for the Kaggle style images that are consid-

rably different from the rest of the images. At the same time, the

espective tubular structures are well preserved. Moreover, visually

iverse results are again generated by varying the noise input z , as

resented in the supplementary file. Visually, Tub-sGAN is shown

o be capable of producing realistic looking phantoms of very dif-

erent styles. 

An image quality assessment metric, structural similarity

SSIM) ( Wang et al., 2004 ) is applied here to provide a quality eval-

ation of the synthesized images. Taken as input a pair of real and

ynthetic images, a SSIM score is provided as a combined evalu-

tion of luminance, contrast and structure comparisons. Here we

ocus on the DRIVE test set images. The average SSIM scores of

ub-GAN and Tub-sGAN are 0.8924 and 0.8980, respectively, which

https://www.kaggle.com/c/diabetic-retinopathy-detection
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Fig. 11. Phantoms generated by Tub-sGAN . The first and second rows display the real DRIVE images, and the corresponding segmentation annotations, respectively. From the 

third row onwards, each row presents the phantoms synthesized from a specific style image shown in the first column. 
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Fig. 12. Example cases of failure. 
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Table 1 

Segmentation quantitative evaluation. Here a patch-based CNN baseline segmenta- 

tion method is engaged on the DRIVE, STARE, HRF, NeuB1 test sets while training 

on different sets of images (as depicted in the left-most column). Synthetic images 

are generated by our Tub-GAN variant. Results are evaluated with average F1-score 

(%), Specificity (%), and Sensitivity(%). Note in each column, the same number of 

synthetic images and real images are used, and the set of synthetic images remains 

the same in the column. See text for details. 

DRIVE STARE HRF NeuB1 

Synthetic images F1-score 71.44 75.34 68.28 77.69 

Specificity 97.79 98.35 97.74 99.19 

Sensitivity 68.57 72.79 67.29 82.46 

Real images F1-score 79.15 78.11 78.68 83.91 

Specificity 97.85 98.26 98.09 99.49 

Sensitivity 80.33 77.87 79.73 86.70 

Real + synthetic images F1-score 80.33 79.02 79.50 85.06 

Specificity 98.15 98.41 98.23 99.54 

Sensitivity 80.38 78.96 80.01 87.26 

Fig. 13. Performance of our patch-based CNN baseline segmentation method on the 

DRIVE benchmark as a function of the number of synthetic training patches. The 

blue and the red curves are the segmentation performances when our Tub-GAN and 

Tub-sGAN variants are used to synthesize images, respectively. See text for details. 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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uggest the performance of the Tub-sGAN variant being better or at

east on par in terms of image quality evaluation. 

.1.1. Failure cases 

It is observed that 90% of the generated images are realistic

ooking. For example, our learned generator G θ of the Tub-GAN

s applied on the DRIVE test set 20 times, and each time with a

andomly sampled noise vector. From the 400 synthesized images,

nly about 40 images ( i.e. 10%) are non-realistic looking ones that

ay contain strange artifacts. Several example cases of failure are

resented in Fig. 12 , with the outlier regions being marked out in

lue. We also note that these failure cases are noticeably reduced

n our Tub-sGAN variant. 

.2. Quantitative results 

It is often difficult to quantitatively evaluate the quality of

ynthetic results, as is also mentioned in Isola et al. (2016) ;

alimans et al. (2016) . In this paper, we consider a relatively

traightforward evaluation scheme, which is to examine the useful-

ess of these newly generated images in boosting the performance

f the segmentation method. As part of the quantitative evalua-

ion process, a segmentation baseline is required. Broadly speaking,

ny reasonable supervised segmentation method could be applica-

le. Practically two very different CNN baselines are considered:

1) a patch-based CNN method, and (2) our re-implementation of

he DRIU method ( Maninis et al., 2016 ). Our patch-based CNN is a

ixel-wise residual-block based classification method, where each

nput instance is a 27 × 27 image patch centered on the current

ixel of interest. More details are provided in the supplementary

le. Another evaluation scheme is through investigating the dif-

erences in segmentation results, when applying the same trained

egmentation model on both synthetic and real images, which can

e found in the supplementary file. In what follows, only the first

cheme is considered. 

.2.1. Patch-based CNN baseline 

As our patch-based CNN baseline segmentation method takes

mage patches as input, 400K image patches are obtained from

eal images in the training set, fully exhausting the number of

eal examples ( i.e. real image patches) that can be acquired from

he DRIVE training set. Additionally we have another 400 K image

atches from the synthetic training images. We consider three sce-

arios, which are: synthetic images where the segmentation base-

ine is trained only on the 400 K synthetic patches; real images

here it is trained on the set of 400 K real image patches; real +

ynthetic images for training on the set of 400 K real patches plus

he 400 K synthetic patches. 

As summarized in Table 1 , the segmentation model performs

orst when training only on synthetic images, which is to be ex-

ected. Meanwhile, taking the DRIVE benchmark for example, the

ntroduction of additional synthetic images, i.e. real + synthetic im-

ges , is demonstrated to improve the segmentation performance to

0.33%, compared with 79.15% F1-score when training on 400 K

eal patches. It suggests that adding synthetic images generated by
ub-GAN helps to improve segmentation performance. The same

rend is consistently observed when working with all different

enchmarks. 

The Wilcoxon signed-rank test with p -value threshold .05 is

sed to compare between the two results: real images and real +

ynthetic images , in order to demonstrate that the incorporation of

ynthetic training images improves the segmentation performance

ith statistical significance. Similar experimental observations can

e obtained for our Tub-sGAN variant. Taking the DRIVE benchmark

or example, similar patterns as presented in Table 1 for Tub-GAN

an also be achieved for Tub-sGAN , where the segmentation results

f real + synthetic images lead to a boost of performance to 80.49%.

ore details are shown in the supplementary file. 

Fig. 13 displays the performance on the DRIVE dataset when

ur patch-based CNN baseline method is employed. Two curves are

lotted for Tub-GAN and Tub-sGAN , respectively. Clearly, the perfor-

ance of our Tub-sGAN variant is consistently better than the Tub-

AN variant. The first point of both curves starts at 79.15%, where

he aforementioned baseline is trained with 400 K real patches

nly. As more synthetic patches are incorporated into the training

et, the performances are improved for both of our synthesizing

pproaches. In particular, at 2 × ( i.e. 400 K synthetic patches are

ncorporated into the training set), the respective performances of

ub-GAN and Tub-sGAN are 80.33% and 80.49%. At 3 × ( i.e. 800 K

ynthetic patches are incorporated into the training set), the re-

pective performances are increased to 80.68% and 80.88%; Both
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Fig. 14. Performance of our DRIU ( Maninis et al., 2016 ) baseline segmentation 

model on the DRIVE benchmark as a function of the number of synthetic train- 

ing images. The blue curve presents results from purely synthetic training images, 

that is, all images in the training set including the first 20 images are synthesized; 

The green curve displays results by augmenting the original training set with syn- 

thetic images, where the first 20 images are those original training images. See text 

for details. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Visual comparison of images generated by Costa et al. and by our approach. 

The same tubular structured annotation from the DRIVE test set is used as input 

for all comparison methods. (a) presents the corresponding real fundus image; (b) 

is the image generated by Costa et al. (2017) ; The remaining two images on the 

right-hand side in (c) and (d) are those generated by our approach. The zoomed-in 

views of (b)–(d) show the finer-detailed textures of the synthesized images. 
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curves reach a plateau at 10 0 0 K synthetic training patches with

their F1 scores of 80.67% and 80.91%, respectively. 

5.2.2. DRIU baseline ( Maninis et al., 2016 ) 

By working with our DRIU segmentation baseline on the DRIVE

benchmark, as shown in Fig. 14 , the performance improves as

more synthetic images are included as additional training exam-

ples. Here two training scenarios are considered, namely synthetic

mixed images, and pure synthetic images, which are represented

by the green and blue curves in the figure, respectively. 1 × refers

to the entire 20 original training images, 2 × stands for the inclu-

sion of additional 20 training images, etc, because DRIU takes an

entire image as an input instead of working with patch inputs as

in Fig. 13 . In particular, both green and blue curves reach a plateau

at around the point of 15 × . Note that in the mixed scenario of

the green curve, only 20 real images are involved which are the

original training images, the rest are all synthetic images. 

It is also worth noting that training our DRIU model with 1920

real images obtained by rotation and flipping data augmentation of

the 20 original training images gives a state-of-the-art performance

81.66%, if we further augment these 1920 real images with 1920

synthetic training images, the performance is boosted to 81.72%.

Two conclusions can be drawn from these experimental results. For

segmenting tubular structured images, our approach could be use-

ful as a data augmentation tool when the training set is small . The

improvement however has its limit and it will diminish when ex-

cessive images are synthesized from a small pool of real training

images. On the other hand, the synthetic images generated from

our approach could still be beneficial even when the training set is

large. 

6. Discussions 

6.1. Comparison with the method of Costa et al. (2017) 

Experiments are conducted to specifically compare with the

work of Costa et al. (2017) . Fig. 15 presents the results

of Costa et al. (2017) obtained with their original implementation

versus those of ours. As is evidenced from this example, the im-

ages generated by Costa et al. (2017) contain artifacts such as chess

board patterns and broken tubular structures. In general the phan-

tom results are not as realistic as those of ours which usually excel

in preserving proper connectivity of the vessel trees. We attribute
his to the adoption of manual tubular structured annotation when

raining our models. The most important distinction is that our

odels are capable of producing different outputs from the same

ubular structured annotations. This is in fact evidenced not only

n Tub-GAN by varying the noise code z as e.g. shown in Fig. 8 , but

lso in Tub-sGAN by engaging different style inputs as displayed in

ig. 15 as well as in Fig. 11 . 

To further validate quantitatively the performance of our re-

ults, we also use the SSIM score ( Wang et al., 2004 ) for im-

ge quality assessment. More specifically, manual vessel annota-

ions from the DRIVE test set are input into both the method

f Costa et al. (2017) and that of our Tub-sGAN to generate

hantom outputs. Then the SSIM score is computed between a

air of a real and a synthetic images. The average SSIM score

f Costa et al. (2017) is 0.8716, which is elevated to 0.8980 by our

pproach. In order to compare the vessel tree structures generated

y the two competing methods, the structure comparison module

n SSIM is employed alone. The SSIM structure comparison scores

f Costa et al. (2017) and ours are 0.9680 and 0.9812 respectively.

hese SSIM scores also indicate that our approach is capable of

enerating better results than that of Costa et al. (2017) . 

.2. Pathological cases 

Now we examine on how the proposed approach performs on

linical pathological cases both visually and quantitatively. As dis-

layed in Fig. 16 , several pathological images are used as style in-

uts to generate pathological looking retinal images, where tubular

tructured annotations from DRIVE are used as the corresponding

ontent input. With different types of pathological cases such as

ataract and diabetic retinopathy, our Tub-sGAN model is able to

ynthesize textural appearances following the style inputs. 

In addition to the visual inspection above, quantitative evalu-

tions are also conducted on pathological cases. A further analy-

is on the STARE dataset is presented in Table 2 . Everything else

s carried out as in Table 1 , except for that the STARE testing im-

ges are split into two subsets: the sets of healthy and pathological

mages, respectively. It is observed that the segmentation perfor-

ance of e.g. patch-based CNN on pathological cases is worse than

hat on healthy ones. However, when focusing on the pathological

ubset,the segmentation model trained with real + synthetic images

till outperforms the one trained with real images only. This again

einforces what has been previously seen from Table 1 . 
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Fig. 16. Visual results of various pathological cases generated by our Tub-sGAN 

model, where the pathological styles are shown in the first column, the generated 

images are displayed in the last column. The tubular structured annotations in the 

middle column are all from DRIVE. 

Table 2 

Segmentation performance of patch-based CNN on the STARE testing set that is split 

into healthy and pathological cases. Here we directly employ the Tub-GAN model 

that is trained on the entire STARE train set and has been evaluated in Table 1 . 

Results are provided using average F1-score (%). See text for details. 

Healthy Pathological 

Synthetic images 79.12 66.51 

Real images 80.92 71.53 

Real + synthetic images 82.20 72.54 

Table 3 

Segmentation performance of patch-based CNN on the STARE testset. Here, the 

healthy training images are used as the training set for retraining with the Tub-GAN 

model, while the pathological testing images are used as the testing set. Results are 

evaluated in terms of average F1-score (%), Specificity (%), and Sensitivity (%). 

Real images Real + synthetic images 

F1-score 74.08 75.18 

Specificity 97.79 97.81 

Sensitivity 74.76 76.69 
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Fig. 17. Zoomed-in views of (a) optic disc and (b) macular regions. 
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We continue with another experiment on the STARE dataset.

ow, the healthy training images are used alone as the training

et. The trained model is then examined on pathological images.

he same training and testing procedure with patch-based CNN is

lso adopted here, with the result shown in Table 3 . Once again,

t can be observed that the segmentation performance of training

ith real + synthetic images outperforms that of training with real

mages only, which follows the same trend we have observed pre-

iously. 

.3. Model limitation 

Overall, our approach is capable of generating images that are

ealistic looking. The synthesized images could maintain the same

ubular structures with different textural appearances. However,

here are limitations that can be further addressed. For instance,

ome anatomical details are less than perfect. The position of the

ptic disc can be correctly generated in general, but the bound-

ries are often not as clear as those of the real images. Take for

xample the real retinal images in Fig. 17 (a), where there usu-
lly exists a bright and clear boundary that separates the optic

isc region away from the rest of the eye fundus. In comparison,

he proposed model tends to synthesize a relatively more blurred

oundary. Moreover, the macular region is sometimes also not en-

irely accurate. Fig. 17 (b) presents the zoomed-in view of the mac-

lar regions. In most cases, such as the first synthesized image of

ig. 17 (b), the generated macular regions are capable of visually re-

embling the real ones that possess a nearly round shape. Sporad-

cally, the synthesized macular regions may deviate notably from

he real ones, as for instance displayed in the second synthesized

mage of Fig. 17 (b). As to neuronal images, much less issues have

een observed, which we attribute to the comparably less sophis-

icated textural appearances in a typical neuronal image. Addition-

lly, the style loss we have utilized considers a global difference

or our Tub-sGAN . It works well in transferring the global textural

tyle, but it is relatively weak in synthesizing local details, such as

xudate regions. These issues remain to be investigated in the fu-

ure. 

. Conclusion and future work 

A data-driven approach is proposed to synthesize retinal fundus

nd neuronal images. Based on the same tubular structured an-

otation, multiple realistic-looking phantoms could be generated.

oreover, the model is capable of learning from small training sets

f as few as 10–20 examples. Experimental results suggest that it

elps to improve image segmentation performance when our syn-

hesized images are used as additional training images. For future

ork, we consider the exploration of possible performance gains in

ther downstream tasks such as image level recognition or grading

f diabetic retinopathy. We also plan to investigate the combina-

ion of different styles in one training procedure instead of train-

ng dedicated models for individual styles. Finally, its applications

n related medical images such as magnetic resonance angiography

nd x-ray angiography are also of interest. 
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